3.305 \(\int \frac{(a+b \sinh ^{-1}(c x))^2}{(d+c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=179 \[ -\frac{b^2 \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{c^2 d x^2+d}}+\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{c^2 d x^2+d}}+\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{c d \sqrt{c^2 d x^2+d}}-\frac{2 b \sqrt{c^2 x^2+1} \log \left (e^{2 \sinh ^{-1}(c x)}+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{c d \sqrt{c^2 d x^2+d}} \]

[Out]

(x*(a + b*ArcSinh[c*x])^2)/(d*Sqrt[d + c^2*d*x^2]) + (Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2)/(c*d*Sqrt[d +
c^2*d*x^2]) - (2*b*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + E^(2*ArcSinh[c*x])])/(c*d*Sqrt[d + c^2*d*x^2
]) - (b^2*Sqrt[1 + c^2*x^2]*PolyLog[2, -E^(2*ArcSinh[c*x])])/(c*d*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.183529, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {5687, 5714, 3718, 2190, 2279, 2391} \[ -\frac{b^2 \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{c^2 d x^2+d}}+\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{c^2 d x^2+d}}+\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{c d \sqrt{c^2 d x^2+d}}-\frac{2 b \sqrt{c^2 x^2+1} \log \left (e^{2 \sinh ^{-1}(c x)}+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{c d \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])^2/(d + c^2*d*x^2)^(3/2),x]

[Out]

(x*(a + b*ArcSinh[c*x])^2)/(d*Sqrt[d + c^2*d*x^2]) + (Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2)/(c*d*Sqrt[d +
c^2*d*x^2]) - (2*b*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + E^(2*ArcSinh[c*x])])/(c*d*Sqrt[d + c^2*d*x^2
]) - (b^2*Sqrt[1 + c^2*x^2]*PolyLog[2, -E^(2*ArcSinh[c*x])])/(c*d*Sqrt[d + c^2*d*x^2])

Rule 5687

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(x*(a + b*ArcSinh
[c*x])^n)/(d*Sqrt[d + e*x^2]), x] - Dist[(b*c*n*Sqrt[1 + c^2*x^2])/(d*Sqrt[d + e*x^2]), Int[(x*(a + b*ArcSinh[
c*x])^(n - 1))/(1 + c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5714

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/e, Subst[Int[(
a + b*x)^n*Tanh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]

Rule 3718

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c + d*x)^(m +
 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(1 + E^(2*(-(I*e) + f*fz*x))), x],
x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{\left (d+c^2 d x^2\right )^{3/2}} \, dx &=\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{d+c^2 d x^2}}-\frac{\left (2 b c \sqrt{1+c^2 x^2}\right ) \int \frac{x \left (a+b \sinh ^{-1}(c x)\right )}{1+c^2 x^2} \, dx}{d \sqrt{d+c^2 d x^2}}\\ &=\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{d+c^2 d x^2}}-\frac{\left (2 b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int (a+b x) \tanh (x) \, dx,x,\sinh ^{-1}(c x)\right )}{c d \sqrt{d+c^2 d x^2}}\\ &=\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{d+c^2 d x^2}}+\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{c d \sqrt{d+c^2 d x^2}}-\frac{\left (4 b \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 x} (a+b x)}{1+e^{2 x}} \, dx,x,\sinh ^{-1}(c x)\right )}{c d \sqrt{d+c^2 d x^2}}\\ &=\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{d+c^2 d x^2}}+\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{c d \sqrt{d+c^2 d x^2}}-\frac{2 b \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{d+c^2 d x^2}}+\frac{\left (2 b^2 \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+e^{2 x}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c d \sqrt{d+c^2 d x^2}}\\ &=\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{d+c^2 d x^2}}+\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{c d \sqrt{d+c^2 d x^2}}-\frac{2 b \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{d+c^2 d x^2}}+\frac{\left (b^2 \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{d+c^2 d x^2}}\\ &=\frac{x \left (a+b \sinh ^{-1}(c x)\right )^2}{d \sqrt{d+c^2 d x^2}}+\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{c d \sqrt{d+c^2 d x^2}}-\frac{2 b \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{d+c^2 d x^2}}-\frac{b^2 \sqrt{1+c^2 x^2} \text{Li}_2\left (-e^{2 \sinh ^{-1}(c x)}\right )}{c d \sqrt{d+c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.455164, size = 152, normalized size = 0.85 \[ \frac{b^2 \sqrt{c^2 x^2+1} \text{PolyLog}\left (2,-e^{-2 \sinh ^{-1}(c x)}\right )+a \left (a c x-b \sqrt{c^2 x^2+1} \log \left (c^2 x^2+1\right )\right )+2 b \sinh ^{-1}(c x) \left (a c x-b \sqrt{c^2 x^2+1} \log \left (e^{-2 \sinh ^{-1}(c x)}+1\right )\right )+b^2 \left (-\left (\sqrt{c^2 x^2+1}-c x\right )\right ) \sinh ^{-1}(c x)^2}{c d \sqrt{c^2 d x^2+d}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c*x])^2/(d + c^2*d*x^2)^(3/2),x]

[Out]

(-(b^2*(-(c*x) + Sqrt[1 + c^2*x^2])*ArcSinh[c*x]^2) + 2*b*ArcSinh[c*x]*(a*c*x - b*Sqrt[1 + c^2*x^2]*Log[1 + E^
(-2*ArcSinh[c*x])]) + a*(a*c*x - b*Sqrt[1 + c^2*x^2]*Log[1 + c^2*x^2]) + b^2*Sqrt[1 + c^2*x^2]*PolyLog[2, -E^(
-2*ArcSinh[c*x])])/(c*d*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.17, size = 343, normalized size = 1.9 \begin{align*}{\frac{{a}^{2}x}{d}{\frac{1}{\sqrt{{c}^{2}d{x}^{2}+d}}}}+{\frac{{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}x}{{d}^{2} \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}+{\frac{{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{{d}^{2}c}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}-2\,{\frac{{b}^{2}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it Arcsinh} \left ( cx \right ) \ln \left ( 1+ \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) ^{2} \right ) }{\sqrt{{c}^{2}{x}^{2}+1}c{d}^{2}}}-{\frac{{b}^{2}}{{d}^{2}c}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it polylog} \left ( 2,- \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) ^{2} \right ){\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+2\,{\frac{ab\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it Arcsinh} \left ( cx \right ) }{\sqrt{{c}^{2}{x}^{2}+1}c{d}^{2}}}+2\,{\frac{ab\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\it Arcsinh} \left ( cx \right ) x}{{d}^{2} \left ({c}^{2}{x}^{2}+1 \right ) }}-2\,{\frac{ab\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }\ln \left ( 1+ \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) ^{2} \right ) }{\sqrt{{c}^{2}{x}^{2}+1}c{d}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(3/2),x)

[Out]

a^2*x/d/(c^2*d*x^2+d)^(1/2)+b^2*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)^2/d^2/(c^2*x^2+1)*x+b^2*(d*(c^2*x^2+1))^(1/
2)*arcsinh(c*x)^2/c/d^2/(c^2*x^2+1)^(1/2)-2*b^2/(c^2*x^2+1)^(1/2)*(d*(c^2*x^2+1))^(1/2)/c/d^2*arcsinh(c*x)*ln(
1+(c*x+(c^2*x^2+1)^(1/2))^2)-b^2/(c^2*x^2+1)^(1/2)*(d*(c^2*x^2+1))^(1/2)/c/d^2*polylog(2,-(c*x+(c^2*x^2+1)^(1/
2))^2)+2*a*b/(c^2*x^2+1)^(1/2)*(d*(c^2*x^2+1))^(1/2)/c/d^2*arcsinh(c*x)+2*a*b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*
x)/d^2/(c^2*x^2+1)*x-2*a*b/(c^2*x^2+1)^(1/2)*(d*(c^2*x^2+1))^(1/2)/c/d^2*ln(1+(c*x+(c^2*x^2+1)^(1/2))^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{a b c \sqrt{\frac{1}{c^{4} d}} \log \left (x^{2} + \frac{1}{c^{2}}\right )}{d} + b^{2} \int \frac{\log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )^{2}}{{\left (c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} + \frac{2 \, a b x \operatorname{arsinh}\left (c x\right )}{\sqrt{c^{2} d x^{2} + d} d} + \frac{a^{2} x}{\sqrt{c^{2} d x^{2} + d} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

-a*b*c*sqrt(1/(c^4*d))*log(x^2 + 1/c^2)/d + b^2*integrate(log(c*x + sqrt(c^2*x^2 + 1))^2/(c^2*d*x^2 + d)^(3/2)
, x) + 2*a*b*x*arcsinh(c*x)/(sqrt(c^2*d*x^2 + d)*d) + a^2*x/(sqrt(c^2*d*x^2 + d)*d)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c^{2} d x^{2} + d}{\left (b^{2} \operatorname{arsinh}\left (c x\right )^{2} + 2 \, a b \operatorname{arsinh}\left (c x\right ) + a^{2}\right )}}{c^{4} d^{2} x^{4} + 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2)/(c^4*d^2*x^4 + 2*c^2*d^2*x^2 + d^
2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{2}}{\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2/(c**2*d*x**2+d)**(3/2),x)

[Out]

Integral((a + b*asinh(c*x))**2/(d*(c**2*x**2 + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}{{\left (c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2/(c^2*d*x^2 + d)^(3/2), x)